US009047195B2

a2 United States Patent 10) Patent No.: US 9,047,195 B2
Aikoh et al. 45) Date of Patent: Jun. 2, 2015
(54) COMPUTER SYSTEM WITH USPC e 709/213, 215, 216
VIRTUALIZATION MECHANISM AND See application file for complete search history.
MANAGEMENT TABLE, CACHE CONTROL .
METHOD AND COMPUTER PROGRAM (56) References Cited
(75) Inventors: Kazuhide Aikoh, Yokohama (IP); U.S. PATENT DOCUMENTS
Keisuke Hatasaki, Kawasaki (JP) 7437,511 Bl 10/2008 Nguyen et al.
] 2001/0032299 Al 10/2001 Teramoto
(73) Assignee: Hitachi, Ltd., Tokyo (JP) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 233 days. EP 1755042 A2 2/2007
Jp 06-266683 9/1994
(21) Appl. No.: 13/522,669 P 2003-150445 5/2003
OTHER PUBLICATIONS
(22) PCT Filed: Jul. 5, 2012
International Search Report and Written Opinion in PCT/JP2012/
(86) PCT No.: PCT/JP2012/004360 004360 dated Mar. 11, 2013.
§371 (©)(1), (Continued)
(2), (4 Date: Jul. 17, 2012
Primary Examiner — Hitesh Patel
(87) PCT Pub. No.: W02014/006656 (74) Attorney, Agent, or Firm — Foley & Lardner LLP
PCT Pub. Date: Jan. 9, 2014 (57) ABSTRACT
(65) Prior Publication Data At least one of a first application program and a second
application program sends an access request to a second
US 2014/0012936 Al Jan. 9, 2014 cache management module, which receives the access
request, and references the second cache management table to
(51) Int. CL identify the storage location of the access-target data con-
GO6F 15/167 (2006.01) forming to the access request. When access-target data exists
GOGF 12/08 (2006.01) in first cache area, the second cache management module
(Continued) sends a request to the first cache management module storing
the access-target data, and where access-target data does not
(52) US.CL exist in the first cache area, acquires the access-target data
CPC GO6F 12/0811 (2013.01); GOGF 9/45558 from the second storage device. When the access-target data
(2013.01); HO4L 67/1002 (2013.01); GO6F is in first cache area, the first cache management module
12/0817 (2013.01); GO6F 12/084 (2013.01); acquires the access-target data conforming to the request
GO6F 12/0871 (2013.01); GOGF 2212/1044 from the relevant first cache area, and sends access-target data
(2013.01); GO6F° 2212/1048 (2013.01) to the second cache management module.
(58) Field of Classification Search

CPC ..o

GOG6F 9/45558; HO4L 67/1002

8 Claims, 19 Drawing Sheets

5801

l Boot ¥O nede

11O node sets data nofification bitin
control area of each computation node:

5902

1O node issues allocation notification to
‘each computation node

‘ 5904

notification

Computation node receives allocation

8905

Computation node confirms.

control area

5906

Computation node sends cache
management tabls to 1O node

8907

VO node updates cache management
table

Yes)

sgoa

No /' Processing
succeeded?

US 9,047,195 B2

Page 2
(51) Imnt.ClL 2011/0145505 Al* 6/2011 Anandetal. 711/130
GO6F 9/455 (2006.01) 2012/0059796 Al* 3/2012 Neumannetal. ... 707/638
HO4L 29/08 (2006.01) OTHER PUBLICATIONS
(56) References Cited Tarjan, D. et al. “The Sharing Tracker: Using Ideas from Cache
Coherence Hardware to Reduce Off-Chip Memory Traffic with Non-
U.S. PATENT DOCUMENTS Coherent Caches”, High Performance Computing, Networking, Stor-
2009/0113420 Al 4/2009 Pawlowski age and Analysis, pp. 1-10, Nov. 13, 2010, XP031807825.
2010/0036889 Al* 2/2010 Joshietal. 707/200

2010/0241673 Al* 9/2010 Wuetal. ..o 707/812 * cited by examiner

U.S. Patent Jun. 2, 2015 Sheet 1 of 19 US 9,047,195 B2

FIG. 1

1

Va4
2A C
,J 20 7
Computation node A 21A Computation node B Computation node C
P
Memory 21B 21C
211A 7 L~
Control program Memory Memory
group
212A
Management |~/
table group 238 ,23C
Application JA
program
' 23A
VO node ‘t ~_330 ~-33q 3
33A Memory /\/
311
Control program group)~/
312
Management table group A~
|
L}
—

U.S. Patent Jun. 2, 2015 Sheet 2 of 19 US 9,047,195 B2
2
~
Computation node 21
~
Memory
111 112 211
/\} Control program group /\} .
Configuration information Configuration information
collection program notification program
/\}113
Cache management program
212
/\/21 21 Management table group/\/?1 22 o~
Configuration management Cache management table
table
4
~/
Application program
22
Processor I~/
23
Interface

U.S. Patent Jun. 2, 2015 Sheet 3 of 19 US 9,047,195 B2

FIG. 3

3
~
/O node 31
~
Memory

3111 Control program group 3112 31

Configuration information Shared cache management
collection program program
312
/\}121 Management table group /\)3122/\/
Configuration Cache management table
management table

/\;123

Address management

table
34 32
l q\/ Processor ’
Storage device l
33
/\/
Interface

U.S. Patent Jun. 2, 2015

FIG. 4

Sheet 4 of 19 US 9,047,195 B2

21
o/
o/ ~/
OS allocation area Local cache area Control command
storage area
31
~/
313 Memory 3144 314
oL ~/ A~ T
Normal cache area
3141 3142 3143A 3143B 3143C
Control —_—— ':i —— 1- -
program [1
allocation | Local cache Shared Virtual focal | Virtual local Virtual local
area extension | cache area ; cachearea | cache area ; cache area
area A] B i C 1
1 I 1
_____ | PR I ——

U.S. Patent

Jun. 2, 2015 Sheet 5 of 19 US 9,047,195 B2
21211 21212 21213 2121
Capacity (GB) Usage (GB) Physical address
0
32 10 1
2
21221 21222 21223 21224 9122
Page number Physical Data Valid bit
address
0 3 a Valid
2 2 b Invalid

U.S. Patent Jun. 2, 2015 Sheet 6 of 19 US 9,047,195 B2

FIG. 8

31211 31212 31213 31214 3121
~ ~ ~ ~/ -
Node identifier Communication Capacity Usage (GB)
mode (GB)

0 Memory reference 64 50

64 30
A RDMA 32 10
B RDMA 32 20
C RDMA 32 10

FIG. 9

31221 31222 31223 3122
~ -~ ~ N
Page number Virtual address Valid bit
0 3 Valid
1 - Invalid
2 5 Invalid
3 2 Valid
4 - Valid

U.S. Patent Jun. 2, 2015 Sheet 7 of 19 US 9,047,195 B2

FIG. 10

31231 31232 31233 31234 31235 r%/@
oL ~/ ~/ ~L N/
Virtual Attribute Phvsical location Physical Utilization
address value Y address status
0 0 Used
Extension
1 Local memory 1 Unused
2 Shared 2 Used
3 Virtual A Computation 0 Used
4 node A 1 Unused
S Virtual B Computation 0 Used
6 node B 1 Unused
/ Virtual G Computation 0 Unused
8 node C 1 Unused

U.S. Patent Jun. 2, 2015 Sheet 8 of 19 US 9,047,195 B2

| Start I
. 5101
Invoke configuration \Yes
API? / — S102
Acquire configuration
No information

' $103
Update configuration ~
management table

F 3

U.S. Patent Jun. 2, 2015 Sheet 9 of 19 US 9,047,195 B2

FIG. 12

| Start I

>
P

S201
FaN
Notification request \Yes
from 1/O node? / /\3/205

No Read or Write

S202 Write ?
No
Boot OS?
_— Read 3206

Configuration A~

- information / Content of

Yes ¢ \ request
. . S203
Acquire information from A~ Cache data
configuration management 8207
table and cache table Identify data storage location ~
from cache management
table
I S208
Acquire data from local cache ~
area
« |
5204

Notify I/O node of
information

U.S. Patent Jun. 2, 2015 Sheet 10 of 19 US 9,047,195 B2

FIG. 13

| Start |

R S301
Request from \Yes
application 1 5302
program? / |~/
Issue I/O request to I/O
No node
r S303
Receive reply from /O node
I S304
Update cache management /\/
table
I S305
Reply to application
|

U.S. Patent Jun. 2, 2015 Sheet 11 of 19 US 9,047,195 B2

FIG. 14

' Start l
- S401

~
< Request from \Yes S402

computation node? !
P / Check whether or not request I~/

No source is new computation
node

I S403
Acquire list information on /\/
memary capacity, usage, and
physical address
I 5404

Assigh computation hode /\/
identification number
and virtual address added

I 5405
Create address management |~/
table and configuration
management table added
]

U.S. Patent Jun. 2, 2015 Sheet 12 of 19 US 9,047,195 B2

FIG. 15
' Start l

»
P

S501
No I/O request from
computation node?
Yes
S$502
< Read or Write ? Write

S$506

Read S503 |~/

Write to storage device
Identify data allocation location

from cache management table l S507

Update I/0 node cache [~

management table

S504 L S508

Issue update request to ~

computation node
Data acquisition process

(Fig. 16) ' $509

Update computation node ad

cache management table

S505
Reply to request source ~S

U.S. Patent Jun. 2, 2015 Sheet 13 of 19 US 9,047,195 B2

FIG. 16

l Start I

> 5601

<(Hit? j;J/Y%S <506
0

N Virtual Cache Shared
area?
S611

5602 5607 Extension
610

Acquire data from
storage device

Acquire data
from shared
cache area

: Acguire data from
Acquire data from q '
cache extension
local cache area
area

N S608
<—0< Same node? >/
Yes

&
¢

Write data to shared $609
cache area
S603
Update table
S604
Condition? X\/
/ No
Yes
S605
Swapout process /\/
(Fig. 17)

A

U.S. Patent Jun. 2, 2015 Sheet 14 of 19 US 9,047,195 B2

FIG. 17

S701

Yes / Capacity = usage + >\/
write capacity?
700 \ pacity

~/ No
Update /\8/703
usage Decide data for local cache migration
| S704
Refer to cache table and retrieve ~/
redundant data
| 8705
Shared or Yes /\/3710
Extension?
Shared

< Shared?
S706

[Extension S711
Yes Capacity = usage +)
Capacity = usage + Yes
migration capacity?
d pacity? redundant capacity?
S713

8707 |No

Decide swapout data in . .
Update local cache extension Decide swapout data in

usage area shared cache area

]
S714
Delete redundant data in /\/

local cache extension
area

5712 Update

« N\ usage
5709
Update cache |~/

management table

Y

End

U.S. Patent Jun. 2, 2015 Sheet 15 of 19 US 9,047,195 B2

FIG. 18

Boot computation node

management table

Computation node initializes cache

Computation node sends cache
management table to I/O node

5804

S801

5802

S803

entry?

No

[
< Is there an \\/ Yes

S805

S807

A

I/O node writes once to cache
management table

I/0 node updates cache
management table

Yes
End

5806

No / Processing
\ succeeded?

U.S. Patent

Jun. 2, 2015 Sheet 16 of 19

FIG. 19

l Start l

US 9,047,195 B2

5901

A~

Boot /0 node

$902

A~

I/O node sets data notification bit in
control area of each computation node
memory

S903

I/0 node issues allocation notification to
each computation node

S904

~/

Computation node receives allocation
notification

S905

~/

Computation node confirms control area

5906

T~

Computation node sends cache
management table to /0O node

§907

oY

I/0 node updates cache management
table

S908

No / Processing

succeeded?

Yesl

End

U.S. Patent

Jun. 2, 2015 Sheet 17 of 19 US 9,047,195 B2

I Start I

FIG.20

> S1001
1/0 request
from Yes 51002
application? ~

a

Cache hit? \Yes

/

51003
No
~
Issue I/O::ggest to 110 $1007
S1004
I /\/ Acquire data from local
Received reply from 11O cache
hode 51005 51008
[7~ A
Update cache Create response
management table message
S1006
Reply to application N~

A

U.S. Patent Jun. 2, 2015 Sheet 18 of 19

FIG. 21

US 9,047,195 B2

1

4
2A 2B 2C
Computation node A Computation node B 1 Computation node C
211A 2/\/8 2110
Control program o, Control program Control program [~/
group group group
12B 212G
Management | 212Al|l Managementtable |~/ Management |~/
table group ad group table group
4A 4B 4C
Application |,/ Application | Application |~
program program program
33A 338 33c 2D
Computationq]ode D 51A - U51 B
ol
Virtual server A Virtual server B r~
211D 311
Control program |~/ Control program group A
grote 212D
~/ 312
Management Management table group v/
table group
4D
Application program ~
5
Virtualization mechanism A~/

US 9,047,195 B2

Sheet 19 of 19

Jun. 2, 2015

U.S. Patent

9o1A8p abelo)s

g eale
8Uoed [B00] |ENUIA

.

Vv eale
3UoBD [B00] |BNHIA

~

eale ayoeo paleysg

N

\/
B9JE UOISUDIXD
ayoed [eo0]

VAN

eale ayoeo |eooT

g a@pou uoneindwon

A

Y A

X Ejed

esle sljoed

B0

Vv ©pou uoneindwon

¢¢ Ol

=

US 9,047,195 B2

1
COMPUTER SYSTEM WITH
VIRTUALIZATION MECHANISM AND
MANAGEMENT TABLE, CACHE CONTROL
METHOD AND COMPUTER PROGRAM

TECHNICAL FIELD

The present invention relates to cache control.

BACKGROUND ART

For the purpose of utilizing the big data, attention to the
high-speed analysis technology of big data is increasing. An
IT platform capable of accessing large amounts of data at high
speeds is needed to realize this high-speed analysis technol-
ogy.

To meet this requirement, for example, Patent Literature 1
discloses a parallel processor having multiple processors, a
distributed shared memory (cache memory) provided for
each processor, and an information transfer line therebe-
tween. Specifically, each processor is able to store data, which
is being held in a distributed shared memory of another pro-
cessor, in its own distributed shared memory as needed. That
is, each processor disclosed in Patent Literature 1 is able to
share data with another processor using the distributed shared
memory. Thus, the entire parallel processor is able to access
large amounts of data at high speeds without increasing the
capacity of the distributed shared memory.

However, in a case where the capacity of the distributed
shared memory is large enough to be able to store all the data
targeted by an application pursuant to processing large
amounts of data, the distributed shared memory, although
fast, becomes very expensive. For this reason, it is conceiv-
able that an /O (Input/Output) node, which comprises a
nonvolatile storage device and a cache memory for tempo-
rarily storing data to be input/output to/from this storage
device, be coupled to a processor (computation node) com-
prising a cache memory, frequently used data be stored in the
cache area of the processor, and infrequently used data be
stored in the /O node storage device.

For example, Patent Literature 2 discloses a technology for
hierarchizing a storage area, which includes the computation
node cache memory, the I/O node cache memory, and the I/O
node storage device, linking this hierarchized storage area to
the processing of an application, and arranging data required
by the application in a storage area belonging to a prescribed
tier.

CITATION LIST
Patent Literature

PTL 1: Japanese Patent Application Laid-open No. HO6-
266683

PTL 2: Japanese Patent Application Laid-open No. 2003-
150445

SUMMARY OF INVENTION
Technical Problem

However, in Patent Literature 2, the management of the
cache memory in the computation node and the management
of the cache memory in the 1/O node are independent of one
another. The management of a cache memory is optimized for
the node (the I/O node or the computation node) comprising
the cache memory. Therefore, cache memory utilization effi-

10

15

20

25

30

35

40

45

50

55

60

65

2

ciency deteriorates in a computer system, which comprises
multiple computation nodes and I/O nodes (I/O nodes, which
are examples of computers) coupled thereto. For example, the
same data could remain in both the computation node cache
memory and the I/O node cache memory, or infrequently used
data could be left in the cache memory.

Solution to Problem

There are multiple first computers, and a second computer,
which comprises a second storage device. Each of the mul-
tiple first computers comprises a first application program, a
first cache management module, and a first cache area. The
second computer comprises a virtualization mechanism, and
multiple OSs run on the virtualization mechanism. The mul-
tiple OSs comprise an OS on which a second application
program runs, and at least one OS comprising a second cache
management module and a second cache management table.
The first application program and/or the second application
program send(s) an access request to the second cache man-
agement module. The second cache management module
receives the access request from the first application program
and/or the second application program, and references the
second cache management table to identify the storage loca-
tion of the access-target data conforming to the access
request. In a case where the access-target data exists in the
first cache area, the second cache management module sends
a data transfer request to the first cache management module
storing the access-target data, and in a case where the access-
target data does not exist in the first cache area, acquires the
access-target data from the second storage device. In the case
where the access-target data exists in the first cache area, the
first cache management module acquires the access-target
data conforming to the data transfer request from the relevant
first cache area, and sends the access-target data to the second
cache management module. The second cache management
module sends the acquired access-target data or the received
access target data to the first application program and/or the
second application program.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 11is a block diagram showing an example of the entire
configuration of a computer system related to Example 1.

FIG. 2 is a block diagram showing an example of the
configuration of a computation node 2.

FIG. 3 is a block diagram showing an example of the
configuration of an 1/0 node 3.

FIG. 4 is aschematic diagram for illustrating an example of
a method for using a memory 21 of the computation node 2.

FIG. 5 is aschematic diagram for illustrating an example of
a method for using a memory 31 of the /O node 3.

FIG. 6 shows an example of a configuration management
table 2121 of the computation node 2.

FIG. 7 shows an example of a cache management table
2122 of the computation node 2.

FIG. 8 shows an example of a configuration management
table 3121 of the I/O node 3.

FIG. 9 shows an example of a cache management table
3122 of the I/O node 3.

FIG. 10 shows an example of an address management table
3133 of the I/O node 3.

FIG. 11 is an example of a flowchart of the processing of a
configuration information collection program 2111 of the
computation node 2.

US 9,047,195 B2

3

FIG. 12 is an example of a flowchart of the processing of an
information notification program 2112 of the computation
node 2.

FIG. 13 is an example of a flowchart of the processing of a
cache management program 2113 of the computation node 2.

FIG. 14 is an example of a flowchart of the processing of a
configuration information collection program 3111 of the [/O
node 3.

FIG. 15 is a detailed example of S503 of FIG. 15.

FIG. 16 is a detailed example of data acquisition process-
ing (S504 of FIG. 15).

FIG. 17 is a detailed example of swap-out processing
(S604 of FIG. 16).

FIG. 18 is an example of a flowchart showing the flow of
processing of the computation node 2 boot-up.

FIG. 19 is an example of a flowchart showing the flow of
processing of an /O node 3 boot-up.

FIG. 20 is an example of a flowchart showing the flow of
processing of a cache management program 2113 related to
Example 2.

FIG. 21 shows an example of the overall configuration of a
computer system 1 related to Example 3.

FIG. 22 is a schematic diagram for illustrating the migra-
tion of data between caches.

DESCRIPTION OF EMBODIMENTS

A number of examples will be explained.

In the following explanation, various types of information
may be explained using the expression “xxx table”, but the
various information may also be expressed using a data struc-
ture other than a table. To show that the various information is
not dependent on the data structure, “xxx table” can be called
“xxx information”.

Furthermore, in the following explanation, there may be
cases where processing is explained having a computer pro-
gram as the doer of the action, but since stipulated processing
is performed in accordance with a program being executed by
acontroller-equipped processor (for example, a CPU (Central
Processing Unit)) while using a storage resource (for
example, a memory) and a communication control device (for
example, a communication port) as needed, the processor
may also be regarded as the doer of the processing. A process,
which is explained having the program as the doer of the
action, may be regarded as a process performed by a control-
ler, which comprises the processor executing this program, or
an apparatus comprising this controller (for example, a com-
putation node or an I/O node). Furthermore, either part or all
of'a program may be realized using dedicated hardware. The
controller may comprise the dedicated hardware in addition
to a processor. A computer program may be installed in
respective computers from a program source. The program
source, for example, may be either a program delivery server
or a storage medium.

In the following explanation, in a case where like elements
“ttt” are explained by distinguishing therebetween, these like
elements may be expressed by combining reference signs like
“tttA” and “tttB”, but when no particular distinction is made
between these elements, the elements are described simply as
et

EXAMPLE 1

FIG. 1 is a block diagram showing an example of the entire
configuration of a computer system 1 related to Example 1.

A computer system 1 comprises a computation node 2 and
an I/O node 3, and these components (the computation node

15

20

25

35

40

45

60

4

2 and the /O node 3) are installed in the same enclosure. The
computation node 2 and the [/O node 3 are coupled inside the
enclosure using a prescribed interface (for example, a PCI
(Peripheral Components Interconnect bus)) 23, 33. The com-
putation node 2, for example, is ahost computer. The /O node
3, for example, is a storage apparatus to which the host com-
puter is coupled.

The computation node 2 and the I/O node 3 do not have to
be disposed in the same enclosure. The computation node 2
and the /O node 3 may also be coupled via a prescribed
communication network (for example, a SAN (Storage Area
Network)).

The computation node 2, for example, is a type of com-
puter. The computation node 2 stores a control program group
211, a management table group 212, and an application pro-
gram 4 in a memory 21. The application program 4 is soft-
ware, which has been designed for a certain purpose (for
example, software for enabling a computer to function as a
word processor). The control program group 211 and the
management table group 212 will be explained further below.

The /O node 3, for example, is a type of input/output
device, and specifically, as was explained hereinabove, is a
storage apparatus. The I/O node 3 comprises a nonvolatile
storage device 34 and a memory 31, and stores a control
program group 211 and a management table group 212 in the
memory 31.

FIG. 2 is a block diagram showing an example of the
configuration of the computation node 2.

The computation node 2 comprises a memory 21, an inter-
face 23, and a processor (for example, a CPU (Central Pro-
cessing Unit)) 22 coupled thereto.

The processor 22 is responsible for controlling the opera-
tion of the computation node 2, and executes the necessary
processing based on the control program group 211 and man-
agement table group 212 stored in the memory 21. The
memory 21, in addition to being used to store the control
program group 211 and the management table group 212, is
also used as working memory for the processor 22. The inter-
face 23 is a communication interface, and controls the proto-
col when the computation node 2 communicates with the [/O
node 3.

The control program group 211 comprises a configuration
information collection program 2111, a configuration infor-
mation notification program 2112, and a cache management
program 2113. The programs 2111 through 2113 in the draw-
ing may be realized using a single program, or may be divided
into either two or less, or four or more programs depending on
the implementation.

The configuration information collection program 2111,
for example, operates as an interface for configuring a con-
figuration management table 2121, which will be explained
further below. The configuration information collection pro-
gram 2111, for example, configures and/or updates the con-
figuration management table 2121 by invoking a setting API
(Application Program Interface).

The configuration information notification program 2112
notifies the /O node 3 of information being held in the con-
figuration management table 2121 and information being
stored in a cache management table 2122, which will be
explained further below, when a not-shown OS (Operating
System) of the computation node 2 is booted up, and in
accordance with a request from a configuration information
collection program 3111 and a shared cache management
program 3112 of the I/O node 3, which will be explained
further below.

The cache management program 2113 stores data from the
1/Onode 3 (the memory 31 or the storage device 34) in a local

US 9,047,195 B2

5

cache area 215, and updates the data stored in the local cache
area 215 in accordance with a request from the application
program 4. Specifically, for example, the cache management
program 2113 adds an entry to a cache management table
2122 and updates the entry.

The management table group 212 comprises the configu-
ration management table 2121 and the cache management
table 2122. These management tables 2121 and 2122 will be
explained further below.

FIG. 3 is a block diagram showing an example of the
configuration of the /O node 3.

As shownin FIG. 3, the /O node 3 comprises amemory 31,
a processor 32, an interface 33, and a storage device 34.

The memory 31, processor 32 and interface 33 respectively
comprise substantially the same functions as the memory 21,
processor 22, and interface 33 of the computation node 2, and
as such, detailed explanations thereof will be omitted.

The storage device 34, for example, may by multiple physi-
cal storage devices configured as a RAID (Redundant Array
of Inexpensive Disks), or may be a logical storage device
based on either an internal or external physical storage device.
For example, data, which is used by the computation node 2
application program 4, is stored in the storage device 34, and
this data is stored in the memory 21 and used when needed by
the application program 4.

The control program group 311 stored in the memory 31
includes a configuration information collection program
3111 and a shared cache management program 3112. The
programs 3111 and 3112 may be realized by being consoli-
dated into a single program, or may be divided into three or
more programs depending on the implementation.

The configuration information collection program 3111
updates a configuration management table 3121 and an
address management table 3123 in accordance with a request
from the information notification part 2112 of the computa-
tion node 2.

The shared cache management program 3112, in accor-
dance with a request from the cache management program
2113 of the computation node 2, acquires data from the stor-
age device 34, reads/writes the data from/to the cache area of
the memory 31, and updates a shared cache management
table 3122, which will be explained further below.

The management table group 312 stored in the memory 31
comprises a configuration management table 3121, a cache
management table 3122, and an address management table
3123. These tables 3121 through 3123 will be explained
further below.

FIG. 4 is a schematic diagram for illustrating a method for
using the memory 21 of the computation node 2.

The computation node 2 allocates and uses the storage area
of the memory 21 with respect to the above-mentioned man-
agement table group 212 and the respective programs (4,
211), and, in addition, logically partitions and uses the
memory 21 storage area as an OS allocation area 213, a local
cache area 214, and a control command storage area 215.

The OS allocation area 213 is an area used as a working
area by the OS, the application program 4, and the control
program groups 211. The local cache area 214 is used as a
cache area by the control program group 211. The control
command storage area 215 is for storing the contents of a
processing request (command) from the local cache area 214
and the I/O node 3.

FIG. 5 is a schematic diagram for illustrating a method for
using the memory 31 of the 1/O node 3.

The /O node 3 allocates the storage area of the memory 31
to the above-mentioned management table group 312 and the
control program group 311, and, in addition, allocates the

10

15

20

25

30

35

40

45

50

55

60

65

6

memory 31 storage area to a control program allocation area
313 and a cache area 314, and logically partitions and uses the
control program allocation area 313 and the cache area 314.

Of these, the I/O node 3 logically partitions and manages
the cache area 314 as a normal cache area 3144, a local
extended cache area 3141, and a shared cache area 3142, and,
in addition, manages multiple virtual local cache areas 3143
respectively corresponding to the multiple local cache areas
214.

The normal cache area 3144 is for temporarily storing data
inputted/outputted to/from the storage device 34.

The local extended cache area 3141 stores data from the
computation node 2 local cache area 214. The shard cache
area 3142 stores data, which is referenced by multiple com-
putation nodes 2.

The virtual local cache area 3143 is associated with the
local cache areas 214 of the respective computation nodes 2.
That is, the virtual local cache area 3143 exists in proportion
to the number of computation nodes 2 communicating with
the /O node 3. For example, the drawing shows a case in
which the I/O node 3 is communicating with three computa-
tion nodes 2A through 2C, and virtual local cache areas
3143A through 3143C, which respectively correspond to
local cache areas 214 A through 214C of the respective com-
putation nodes 2A through 2C, exist in the memory 31. A
single virtual local cache area 3143A will be given as an
example of the virtual local cache area as deemed appropriate
hereinbelow.

The 1/O node 3 associates the addresses (physical
addresses, which will be explained further below) of the local
cache areas 214 A through 214C of the computation nodes 2A
through 2C with the address (virtual addresses, which will be
explained further below) of the corresponding virtual local
cache areas 3143 A through 3143C, and, in addition, manages
the utilization statuses of the local cache areas 214 A through
214C. This makes it possible for the I/O node 3 to integra-
tively manage the computation node 2 local cache areas 214A
through 214C and the 1/O node 3 cache area 314.

The virtual local cache area 3143A is associated with the
local cache area 214A, but does not actually store data (for
example, data used by the application program 4). The data in
the virtual local cache area 3143A is actually stored in the
corresponding local cache area 214A. The 1/O node 3 can
access data in the corresponding local cache area 214A by
referencing the virtual local cache area 3143 A. The virtual
local cache area 3143 A does not store the same data as the
data stored in the local cache area 214A, thereby making it
possible to conserve the capacity ofthe I/O node 3 cache area
314.

There is one local extended cache area 3141, and this local
extended cache area 3141 is logically partitioned, and a par-
titioned area is provided to each computation node 2. This
approach promises to keep the capacity of the local extended
cache area 3141 small. However, a local extended cache area
3141 may also be provided to each computation node 2.

FIG. 6 shows an example of the configuration management
table 2121 of the computation node 2.

The configuration management table 2121 comprises a
capacity 21211, a used capacity 21212, and a physical
address 21213. The capacity 21211 shows the capacity of the
local cache area 214. The used capacity 21212 shows the
amount of data actually used by the computation node 2 with
respect to the capacity of the local cache area 214. The physi-
cal address 21213 shows multiple physical addresses belong-
ing to the local cache area 214.

FIG. 7 shows an example of the cache management table
2122 of the computation node 2.

US 9,047,195 B2

7

The cache management table 2122 comprises a page num-
ber 21221, a physical address 21222, a data 21223, and a valid
bit 21224.

The storage device 34 comprises multiple pages (storage
areas), and the page number 21221 is the number of a page of
the storage device 34. The physical address 21222 is the same
as the physical address 21213 of the configuration manage-
ment table 2121, that is, it shows the physical address of the
local cache area 214. Based on a combination of the page
number 21221 and the physical address 21222, it is clear
where data, which is stored in a certain page of the storage
device 34, is stored in the local cache area 214. The data
21223 shows the type of data being stored in an area (an area
in the local cache area 214) identified from the physical
address 21222.

The valid bit 21224 is information showing whether the
data stored in the area identified using the physical address
21222 is “valid” or “invalid”. “Invalid” shows that the data
stored in the area identified in accordance with the physical
address 21222 is different from data stored in a page of the
storage device 34 associated with the relevant area. Alterna-
tively, “valid” shows that the data stored in the area identified
using the physical address 21222 is the same as data stored in
the page associated with the relevant area.

FIG. 8 shows an example of the configuration management
table 3121 of the I/O node 3.

The configuration management table 3121 correspond-
ingly manages a node identifier 31211, a communication
mode 31212, a capacity 31213, and a used capacity 31214 for
each computation node 2 or /O node 3.

The node identifier 31211 is information for identifying the
computation nodes 2A through 2C and the /O node 3. The
node identifier “0” denotes the I/O node 3. The node identi-
fiers “A through C” respectively denote the computation
nodes 2A through 2C.

The communication mode 31212 shows the mode by
which the I/O node 3 accesses data, which is associated with
the cache area 314, and data, which is stored in the cache area
314. The modes for accessing data, for example, are RDMA
(Remote Direct Memory Access), and memory reference.
“RDMA” shows that the /O node 3 accesses data stored in
the local cache area 214, which is associated with a virtual
local cache area 3143. “Memory reference” shows that the
1/0 node 3 accesses data stored in the local extended cache
area 3141 and the shared cache area 3142, which are areas of
the cache area 314 other than the virtual local cache area
3143.

The capacity 31213 shows the capacity of both the local
extended cache area 3141 and the shared cache area 3142 in
a case where the node identifier 31211 is “0”. In a case where
the node identifier 31211 is “A through C”, the capacity
31213 shows the capacity of each of the local cache areas
214A through 214C.

The used capacity 31214 shows the capacity, which is
actually being used with respect to the capacity 31213.

In a case where the node identifier 31211 is “0”, the capac-
ity 31213 and the used capacity 31214 are divided into two
rows. The upper row shows the capacity 31213 and the used
capacity 31214 of'the local extended cache area 3141, and the
lower row shows the capacity 31213 and the used capacity
31214 of the shared cache area 3142. In addition, in a case
where the node identifier 31211 is “A through C”, the capacity
31213 and the used capacity 31214 of the virtual local cache
area 3143 corresponding to the local cache areas 214A
through 214C of the respective computation nodes 2A
through 2C are shown.

25

40

45

50

55

8

FIG. 9 shows an example of the cache management table
3122 of the I/O node 3.

The cache management table 3122 shows whether or not
data stored in the cache area 314 and data stored in the storage
device 34 are redundant.

The cache management table 3122 comprises a page num-
ber 31221, a virtual address 31222, and a valid bit 31223.

The page number 31221 is a number of a page in the
storage device 34. The virtual address 31222 shows multiple
virtual addresses, which belong to the cache area 314. For
example, in the example shown in the drawing, the page
number 31221 “0” is associated with the virtual address “3”,
and this shows that data stored in the page of the page number
“0” is stored in the area (the area in the cache area 314)
belonging to virtual address “3”. Meanwhile, an invalid value
“-” is associated as the virtual address 31222 with the page
number 31221 “1”. This shows that data stored in the storage
device 34 is not stored in the cache area 314.

The valid bit 31223 is information showing whether data
stored in the storage device 34 is “valid” or “invalid”. The
valid bit 31223 is substantially the same as the valid bit 21224
of the cache management table 2122. For example, in the
drawing, the page number “2” of the storage device 34 is
associated with the virtual address “5” of the cache area 314,
but the valid bit 31223 is “invalid”, thereby indicating that the
data stored in the area (the area in the cache area 314) of the
virtual address “5” differs from the data being stored in the
page of page number “2”.

FIG. 10 shows an example of the address management
table 3133 of the I/O node 3.

The address management table 3123 comprises a virtual
address 31231, an attribute value 31232, a physical location
31233, a physical address 31234, and a utilization status
31235 for each area in the cache area 314. The information of
the address management table 3123 will be explained below
by taking one area in the cache area 314 (referred to as “target
area” in the explanation of FIG. 10) as an example.

The virtual address 31231 shows the virtual address of the
target area.

The attribute value 31232 shows the type of area, which
comprises the target area. The attribute value 31232
“extended” shows that the target area is being used as the local
extended cache area 3141. The attribute value 31232 “shared”
shows that the target area is being used as the shared cache
area 3142. Also, the attribute value 31233 “virtual A” shows
that the target area is being used as the virtual local cache area
3143 A. This attribute value 31232 may be omitted.

The physical location 31233 shows the place where the
data stored in the target area is actually stored. “Local
memory” shows that the data stored in the target area is
actually being stored in the memory 31 of the /O node 3. In
addition, “Computation node A” shows that the data stored in
the target area is actually being stored in the memory 21 of the
computation node 2A.

The physical address 31234 shows the physical address of
the target area. The utilization status 31235 shows whether
data is being stored in the area indicated by the physical
address 31234 of the target area. “Used” shows that data is
being stored in the area indicated by the physical address
31234 of the target area. “Unused” shows that data is not
being stored in the area indicated by the physical address
31234 of the target area.

How data is migrated between caches will be explained
next.

FIG. 22 is a schematic diagram for illustrating the migra-
tion of data between caches. Furthermore, in the explanation

US 9,047,195 B2

9
of FIG. 22, it is supposed that the computer system 1 is as
described in (1) through (5) below.

(1) The local cache area of the computation node A is an
area for storing data acquired at the time of an application
program A (the application program of the computation node
A) read request. The same also holds true for the local cache
area of the computation node B, which is used at the time of
an application program B (the application program of the
computation node B) read request.

(2) The virtual local cache areas A and B are area names,
which appear in the cache management table 3122 of the I/O
node 3 for determining whether or not the /O node 3 writes
data to the local cache areas of computation nodes A and B,
and are not for using the I/O node 3 memory area to actually
store data. Ina case where the I/O node 3 decides to read/write
data from/to the virtual local cache area A (B), the /O node 3
issues a read/write request to the local cache area A (B) of the
computation node A (B).

(3) The local extended cache area is for use as a migration
destination for data prior to an overwrite when a data over-
write has been generated in the local cache area A (B) of the
computation node A (B).

(4) The shared cache area 3142 is for storing data, which
has been referenced by both application programs A and B,
and migrates data with respect to a read request from the
application program A (B) in a case where a hit occurred for
either the computation node B (A) local cache area B (A) or
the local extended cache area.

(5) Both of the application programs A and B can use the
data in the local cache areas of the computation nodes A and
B, and in the I/O node memory by going through the I/O node.

<Data Migration Process (1)>

A process for migrating data from the local cache area A
(virtual local cache area A) to the shared cache area will be
explained here.

In a case where there has been a read request from the
application program A to read data X from a page of the
storage device 34, the computation node A sends the read
request to the I/O node 3 without determining whether or not
the data X isin thelocal cache area A. The I/O node 3 reads the
data X from the storage device 34 to the normal cache area
3144, and sends the read data X to the computation node 2A,
which is the source of the read request. The computation node
2A stores the received data X in the local cache area A.

Then, in a case where there is a data X read request from the
application program B, the computation node B sends this
read request to the I/O node 3 without determining whether or
not the data X is in the local cache area B. The I/O node 3
receives the read request, reads data X from the local cache
area A corresponding to the virtual local cache area A, which
corresponds to the source of the read request, stores the read
data X in the normal cache area 3144, and sends the data X
from the normal cache area 3144 to the computation node B.
The computation node B stores the received data X in the
local cache area A. Thereafter, the /O node 3 migrates the
data X stored in the normal cache area 3144 (the above-
mentioned data X, which has been stored in the normal cache
area 3144 from the local cache area A) from the normal cache
area 3144 to the shared cache area 3142. That is, in a case
where the application B once again targets data X for a read,
the data X will generate a hit in the shared cache area 3142
even, for example, when the data X has been overwritten and
has disappeared from the local cache area B. In a case where
the I/O node 3 has received a read request from the compu-
tation node B targeting the data X for a read, this makes it
possible to rapidly send the data X without placing a load on

10

15

20

25

30

35

40

45

50

55

60

65

10

the computation node A, and, in addition, without relying on
the cache update frequency of the application A.

<Data Migration Process (2)>

A process for migrating data from the local cache area A
(virtual local cache area A) to the extended local cache area
will be explained here.

The I/O node 3 checks the remaining capacity (or, the free
area ratio, which is the percentage of remaining capacity
relative to the capacity of the local cache area A) of the local
cache area A of the computation node A at cache update time.
Then, in a case where the remaining capacity of the compu-
tation node A local cache area A is equal to or smaller than the
size of the update data, the I/O node 3 migrates, from among
data stored in the local cache area A, the data, which corre-
sponds to a prescribed condition (for example, infrequently
used data) X, to the local extended cache area.

Thus, there may be cases where storing the data, which
conforms to a prescribed condition (for example, infrequently
used data) X, in the local extended cache area A temporarily
rather than suddenly swapping this data out of the storage
device 34 makes it possible to reduce the frequency with
which the data X must be read from the storage device 34.
Furthermore, the data X, which has been stored in the local
extended cache area A, is migrated to the shared cache area
3142 when targeted for a read by the computation node B.

<Data Migration Process (3)>

A process for migrating data from the local extended cache
area to the shared cache area 3142 will be explained here.

In a case where there is a read request for the data X from
the application program B after data migration process (2) has
been performed, the computation node B sends the read
request to the I/O node 3. The /O node 3 receives this read
request, stores the data X, which is being stored in the local
extended cache area, in the normal cache area 3144 for atime,
and sends the data X from the normal cache area 3144 to the
computation node B. The computation node B stores the
received data X in the local cache area B. Thereafter, the /O
node 3 migrates the data X from the normal cache area 3144
to the shared cache area 3142.

The flow of processing of each program will be explained
next.

FIG. 11 is an example of a flowchart of the processing of
the configuration information collection program 2111 of'the
computation node 2.

The configuration information collection program 2111
detects the execution of a setting API from the application
program 4 (S101).

In a case where the execution of the setting API has not
been detected (S101: No), the configuration information col-
lection program 2111 performs the processing of S101.

In a case where the configuration information collection
program 2111 has detected the execution of the setting API
(S101: Yes), the configuration information collection pro-
gram 2111 uses the setting API to collect the configuration
information to be notified (S102), and writes the collected
configuration information to the configuration management
table 2121 (S103).

The configuration management table 2121 is either created
or updated in accordance therewith.

FIG. 12 is an example of a flowchart of the processing of
the information notification program 2112 ofthe computation
node 2.

The information notification program 2112 determines
whether or not there has been a configuration information
acquisition request from the /O node 3 (S201). As used here,
the configuration information is information, which is man-

US 9,047,195 B2

11

aged by the configuration management table 2121 and the
cache management table 2122 of the computation node 2.

In a case where a configuration information acquisition
request from the I/O node 3 has not been detected (S201: No),
the information notification program 2112 checks whether or
not a computation node 2 OS boot-up process has been
executed (S202).

In a case where the execution of the OS boot-up process has
not been detected (S202: No), the information notification
program 2112 returns to the processing of S201.

In a case where the execution of the OS boot-up process has
been detected (S202: Yes), the information notification pro-
gram 2112 collects information related to the local cache area
214 from the configuration management table 2121 and the
cache managementtable 2122 (S203), and sends the collected
information to the /O node 3 as configuration information
(S204). Thereafter, the information notification program
2112 once again performs the processing of S201.

In a case where a configuration information acquisition
request from the [/O node 3 has been detected (S201: Yes), the
information notification program 2112 determines the type of
the request (read or write) from the /O node 3 (S205).

In a case where the determination of S205 is that the
request is a read request, the information notification program
2112 performs the processing of S206. In a case where the
request is a write request, the information notification pro-
gram 2112 performs the processing of S204.

In a case where the determination of S206 is that the read
request is a request to acquire configuration information, the
information notification program 2112 performs the process-
ing of S203.

In a case where the determination of S206 is that the read
request is a request to acquire cache data (the data in the local
cache area 214), a physical address will be specified in this
read request. The configuration information notification pro-
gram 2112 uses the physical address of the read request to
reference the cache management table 2122, identifies the
storage location of the read-target data (S207), and acquires
the read-target data from the identified storage location (an
area in the local cache area 214) (S208). Thereafter, the infor-
mation notification program 2112 performs the processing of
S204.

FIG. 13 is an example of a flowchart of the processing of
the cache management program 2113 of the computation
node 2.

The cache management program 2113 checks whether or
not an [/O request has been generated in accordance with a
certain computer program (assumed to be the application
program 4 in the explanation of FIG. 13) being executed
(S301).

In a case where there is no I/O request from the application
program 4 (S301: No), the cache management program 2113
performs the processing of S301.

In a case where there is an /O request from the application
program 4 (S301: Yes), the cache management program 2113
sends the I/O request from the application program 4 to the
1/0 node 3 without determining whether or not data conform-
ing to this I/O request is in the local cache area 214 (S302).

The cache management program 2113 receives a reply
(hereinafter referred to as /O reply) with respect to the /O
request from the [/O node 3 (8303). Specifically, for example,
the cache management program 2113, in accordance with the
1/0O reply from the I/O node 3, stores the data conforming to
the I/O request in the area (the area in the local cache area 214)
belonging to the physical address specified in the /O reply.

The cache management program 2113 updates the cache
management table 2122. For example, the cache management

10

15

20

25

30

35

40

45

50

55

60

65

12

program 2113 adds an entry conforming to the 1/O request to
the cache management table 2122, stores a page number, a
physical address, and data included in the received reply in
the added entry, and, in addition, configures the valid bit
21223 in this entry to “valid”. The cache management pro-
gram 2113 updates the value of the used capacity 21212 of the
configuration management table 2121 to the value specified
in the I/O reply from the I/O node 3 (S304).

The cache management program 2113 replies to the appli-
cation program 4 that the I/O processing has been completed
(S305).

FIG. 14 is an example of a flowchart of the processing of
the configuration information collection program 3111 of'the
/O node 3.

The I/O node 3 determines whether or not there is a con-
figuration information notification request from the compu-
tation node 2 (S401).

In a case where there is no configuration information noti-
fication request from the computation node 2 (S401: No), the
configuration information collection program 3111 performs
the processing of S401.

In a case where there is a configuration information noti-
fication request from the computation node 2 (S401: Yes), the
configuration information collection program 3111 deter-
mines whether or not the notification request-source compu-
tation node 2 is a new computation node 2 (S402). A new
computation node 2 is a computation node, which is not
registered in the address management table 3123. Specifi-
cally, for example, the configuration information collection
program 3111 identifies a PCI pin number from which the
communication was generated, and determines whether the
identified computation node 2 is a new computation node 2 by
determining whether or not the identified computation node 2
is registered in the address management table 3123.

The configuration information collection program 3111
stores information conforming to the configuration informa-
tion notification request in the memory 31 of the /O node 3 as
the configuration information, and/or updates the memory 31
with the information conforming to the configuration infor-
mation notification request (S403).

The configuration information collection program 3111, in
a case where the computation node 2 is a new computation
node 2, for example, configures the PCI pin number as the
identification number of this computation node 2, and based
on the capacity of the usable cache memory 21 (local cache
memory 214) of this computation node 2, allocates a virtual
address 3143, which is an area constituting a portion of the
cache area 314, to the cache memory 21 (S404).

The configuration information collection program 3111
stores configuration information related to the computation
node 2 registered in the address management table 3123
and/or configuration information related to the new compu-
tation node 2 in the cache management table 3122 and the
address management table 3123 (S405). Thereafter, the con-
figuration information collection program 3111 performs the
processing of S401 once again.

According to the processing shown in FIG. 14, the /O node
3 is able to integratively manage the information being man-
aged by the computation node 2 configuration management
table 2121 and the cache management table 2122 of each
computation node 2.

FIG. 15 is an example of a flowchart of the processing of
the shared cache management program 3112 of the I/O node
3.

The shared cache management program 3112 determines
whether or not there is an /O request from the computation
node 2 (S501).

US 9,047,195 B2

13

In a case where there is no I/O request from the computa-
tion node 2 (S501: No), the shared cache management pro-
gram 3112 once again performs the processing of S501.

In a case where there is an I/O request from the computa-
tion node 2 (S501: Yes), the shared cache management pro-
gram 3112 determines whether the /O request is a read
request or a write request (S502).

In a case where the /O request is a read request, the shared
cache management program 3112 identifies the storage loca-
tion of data conforming to the read request from the cache
management table 3122 (S503). The data storage location
here shows the page number 31221 of the storage device 34.
Initially, the data conforming to the read request is not stored
in any of the local cache areas 214 associated with the local
extended cache area 3141, shared cache area 3142, and virtual
local cache area 3143.

The shared cache management program 3112 reads the
data from the read-source page (the page to which the read
request-specified address belongs) of the storage device 34 in
which the data conforming to the read request is stored, and
stores the read data in the normal cache area 3144 (S504).

The shared cache management program 3112 sends a reply
(response) including this data to the request-source (the
source of the read request) computation node 2 (S505).

Alternatively, in a case where the I/O request is a write
request, the shared cache management program 3112 writes
the data conforming to the write request (the write-target
data) to the write-destination page (the page to which the
write request-specified address belongs) of the storage device
34 (S506). The shared cache management program 3112 does
not write the write-target data to the normal cache area 3144
at this point, but may temporarily store this data in the normal
cache area 3144, and thereafter write this data to the write-
destination page from the normal cache area 3144.

The shared cache management program 3112 configures
the valid bit 31223 corresponding to the write-destination
page to “invalid” in the cache management table 3122 (S507).
This process, for example, is for prohibiting the application
program 4 from using pre-update data stored in the cache
areas 214 and 314. Processing such as this is performed
because data read to the cache areas 214 and 314 from the
storage device 34 prior to updating will differ from the post-
update data stored in the storage device 34 as a result of data
stored in the storage device 34 having been updated.

The shared cache management program 3112 references
the address management table 3123, and sends a cache man-
agement table 2122 update request to the computation node 2
corresponding to the virtual address for which the valid bit
31223 was configured to “invalid” in S507 (S508). This
update request specifies the physical address corresponding
to the virtual address for which the valid bit 31223 was
configured to “invalid” in S507.

The computation node 2, which is the destination of the
update request of S508, receives this update request, and
configures the valid bit 21223 corresponding to the physical
address specified in this update request to “invalid” in the
cache management table 2122 (S509). Thereafter, the shared
cache management program 3112 once again performs the
processing of S505.

FIG. 16 is a detailed example data acquisition processing
(S504 of FIG. 15).

The shared cache management program 3112 references
the cache management table 3122 and determines whether or
not there is a cache hit (S601). The “presence or absence of a
cache hit” here refers to whether or not the read-target data is
stored in the virtual local cache area corresponding to the
computation node, which is the source of the read request, and

10

15

20

25

30

35

40

45

50

55

60

65

14

specifically to whether or not the association between the
read-source page number 31221 and virtual address 31222
exists in the cache management table 3122.

In a case where there is no cache hit (S601: No), the shared
cache management program 3112 reads the read-target data
from the read-source page (the storage device 34) (S602),
stores the read data in the normal cache area 3144, includes
this data in a reply to the request-source computation node 2,
and, in addition, configures the valid bit 31223 corresponding
to the read-source page to “valid” in the cache management
table 3122 (S603).

Thereafter, the shared cache management program 3112
determines whether or not a prescribed condition regarding
the virtual local cache area 3143 corresponding to the
request-source computation node 2 has been satisfied (S604).
Specifically, for example, the shared cache management pro-
gram 3112 determines whether or not the free space (or the
free capacity ratio) for the virtual local cache area 3143 (the
local cache area 214) corresponding to the request-source
computation node 2 is equal to or smaller than a prescribed
value. This determination can be made by referencing the
configuration management table 3121.

In a case where the prescribed condition for the virtual
local cache area 3143 corresponding to the request-source
computation node 2 has been satisfied (S604: Yes), the shared
cache management program 3112 executes a swap-out pro-
cess (S605). As used here, “swap-out process”, for example,
refers to moving infrequently used data from among the data
stored in the virtual local cache area 3143 (local cache area
214)to the storage device 34. This swap-out process increases
the remaining capacity of the virtual local cache area 3143
(local cache area 214).

In a case where there has been a cache hit (S601: Yes), the
shared cache management program 3112 references the
address management table 3123 and determines in which area
of the cache area 314 (that is, which of the local extended
cache area 3141, the shared cache area 3142, and the virtual
local cache area 3143) the cache hit data is located (the area
storing the read-target data) (S606).

In a case where the determination of S606 is that the cache
hit data location is the virtual local cache area 3143, the
shared cache management program 3112 uses, for example, a
RDMA transfer process to acquire the read-target data from
the local cache area 214, which is associated with the virtual
local cache area 3143 (S607), and determines whether or not
the data request-source computation node and the data acqui-
sition-destination computation node are the same (S608).
This determination processing is implemented by comparing
the node identifiers 31211 in the configuration management
table 3121.

Inacase where the determination of S608 is that it is not the
same node (S608: No), the shared cache management pro-
gram 3112 performs the processing of S603.

In a case where the determination of S608 is that it is the
same node (S608: Yes), the shared cache management pro-
gram 3112 writes the acquired data to the shared cache area
3142 (S609). Thereafter, the shared cache management pro-
gram 3112 performs the processing of S603.

In a case where the determination of S606 is that the cache
hit location is the local extended cache area 3141, the shared
cache management program 3112 acquires the read-target
data from the local extended cache area 3141 (S610), and
write this data to the shared cache area 3142 (S609). There-
after, the shared cache management program 3112 performs
the processing of S603.

In a case where the determination of S606 is that the cache
hit location is the shared cache area 3142, the shared cache

US 9,047,195 B2

15
management program 3112 acquires the read-target data
from the shared cache area 3142 (S611). Thereafter, the
shared cache management program 3112 performs the pro-
cessing of S603.

The determination as to whether or not there is a cache hit
may be performed in order from the shared cache area, the
virtual local cache area, and the local extended cache area.
Specifically, for example, the shared cache management pro-
gram 3112 may perform the cache hit determination for the
shared cache area, and in a case where the result of this
determination is negative, may perform the cache hit deter-
mination for the virtual local cache area, and in a case where
the result of this determination is negative, may perform the
cache hit determination for the local extended cache area. The
reason the initial target of the cache hit determination is the
shared cache area is because the preferential use of data,
which has been stored in the shared cache area, avoids the
frequently accesses to the computation node 2, thereby mak-
ing it possible to hold the performance degradation of the
application program 4 in check.

In addition, the shared cache management program 3112 of
the I/O node 3 may comprise a setting API for controlling the
order of cache hit determinations, and may change the deter-
mination order in accordance with a specification from the
application program 4.

FIG. 17 is a detailed example of swap-out processing
(S604 of FIG. 16).

The swap-out process, for example, is performed based on
the amount of remaining capacity of the local cache area 214
associated with the virtual local cache area 3143. Specifically,
for example, the shared cache management program 3112
references the configuration management table 3121 and
determines whether or not the capacity 31213 of the request-
source computation node 2 is equal to or larger than the sum
of'the used capacity 31214 and the write capacity (the size of
the write-target data) (S701).

In a case where the capacity 31213 is equal to or larger than
the sum of the used capacity 31214 and the write capacity
(S701: Yes), the shared cache management program 3112
writes the write-target data to the local cache area 214 asso-
ciated with the virtual local cache area 3143, and adds the
value of the write capacity to the used capacity 31214 of the
request-source computation node 2 (S702).

Alternatively, in a case where the capacity 31213 is less
than the sum of the used capacity 31214 and the write capac-
ity (8701: No), the shared cache management program 3112
decides migration-target data from among the data stored in
the local cache area 214 of the request-source computation
node 2 based, for example, on a LRU (Least Recently Used)
algorithm (S703). The shared cache management program
3112 reads the migration-target data from the local cache area
214 and temporarily stores this migration-target data in the
normal cache area 3144.

The shared cache management program 3112, based on the
cache management table 3122 and the address management
table 3123, uses the page number corresponding to the migra-
tion-target data to retrieve the migration-target data and
redundant data (matching data) from the local extended cache
area 3141 and the shared cache area 3142 (S704).

In a case where the redundant data is not being stored in
either of the local extended cache area 3141 or the shared
cache area 3142 (S705: No), the shared cache management
program 3112 references the configuration management table
3121 (the capacity 31213 of the node having the node iden-
tifier 31211 0f “0”), and determines whether or not the capac-
ity 31213 of the local extended cache area 3141 is equal to or

10

15

20

25

30

35

40

45

50

55

60

65

16

larger than the sum of the used capacity 31214 and the migra-
tion capacity (the size of the migration-target data) (S706).

In a case where the capacity 31213 is equal to or larger than
the sum of the used capacity 31214 and the migration capacity
(S706: Yes), the shared cache management program 3112
writes the migration-target data to a free area in the local
extended cache area, and adds the migration capacity to the
used capacity 31214 of the local extended cache area in the
configuration management table 3121 (S707).

Alternatively, in a case where the capacity 31213 is less
than the sum of the used capacity 31214 and the migration
capacity (S706: No), the shared cache management program
3112 decides the data to be swapped out from among the data
stored in the local extended cache area 3141 (for example,
makes a decision based on the LRU algorithm), swaps out the
decided data from the local extended cache area 3141 to the
storage device 34, and writes the migration-target data to the
free area of the local extended cache area 3141 (the area in
which the swapped out data had been stored) (S708). In
addition, the shared cache management program 3112
updates the cache management table 3122 with respect to the
area in which the swapped out data had been stored (the
write-destination area of the migration-target data) (S709).
Specifically, for example, the page number 31211 for the
relevant area is changed from the page number of the swapped
out data to the page number of the migration-target data. In
this example, the size of the swapped out data (decided data)
matches the size of the migration-target data, and as such, the
updating of the used capacity 31214 as in S707 need not be
performed. The size of the swapped out data (the decided
data) may also be larger than the migration-target data.

In a case where the migration-target data is stored in either
the local extended cache area 3141 or the shared cache area
3142 (S705: Yes), the shared cache management program
3112 determines whether the location in which the migration-
target data and the redundant data are being stored is the local
extended cache area 3141 or the shared cache area 3142
(8710).

In a case where the determination of S710 is that the redun-
dant data is stored in the local extended cache area 3141, the
shared cache management program 3112 references the con-
figuration management table 3121 and determines whether or
not the capacity 31213 of the shared cache area 3142 is equal
to or larger than the sum of the used capacity 31214 and the
redundant capacity (the size of the redundant data) (S711).

In a case where the capacity 31213 is equal to or larger than
the sum of the used capacity 31214 and the redundant capac-
ity (S711: Yes), the shared cache management program 3112
writes the redundant data to the shared cache area 3142, and
adds the size of the redundant data to the used capacity 31214
of the shared cache area in the configuration management
table 2131 (S712).

In a case where the capacity 31213 is less than the sum of
the used capacity 31214 and the redundant capacity (S711:
No), the shared cache management program 3112 decides the
data to be swapped out of the shared cache area 3142 (for
example, makes a decision based on the LRU algorithm), and
stores the decided data in the storage device 34. The shared
cache management program 3112 writes the redundant data
to the free area of the shared cache area 3142 (the area in
which the swapped out data had been stored) (S713). In
addition, the shared cache management program 3112 deletes
this redundant data from the local extended cache area 3141
(S714). Thereafter, the shared cache management program
3112 performs the processing of S709. The size of the data
decided in S713 matches the size of the redundant data, but
may be larger than the size of the redundant data.

US 9,047,195 B2

17

In a case where the determination of S710 is that the redun-
dant data is stored in the shared cache area 3142, the shared
cache management program 3112 ends the processing.

FIG. 18 is an example of a flowchart showing the flow of
processing of the computation node 2 boot-up process.

When the computation node 2 is powered up (S801), the
computation node 2 (the configuration information collection
program 2111) executes an initialization process to delete all
the data being managed in the cache management table 2122
(S802), and sends the configuration management table 2121
and the cache management table 2122 to the /O node 3
(S803).

The I/O node 3 (the configuration information collection
program 3111) receives the configuration management table
2121 and the cache management table 2122 from the compu-
tation node 2, and determines whether information based on
these tables 2121 and 2122 is already registered in the address
management table 3123 (S804).

In a case where this information is not registered (S804:
No), the /O node 3 (the configuration information collection
program 3111) references the unregistered configuration
management table 2121 of the computation node 2, creates
the same number of virtual addresses 31231 as there are
physical addresses 21213, and registers the virtual addresses
31231 in the address management table 3123 (S805). This
processing associates the virtual local cache area 3143 of the
1/0 node 3 with the local cache area 214 of the computation
node 2. Thereafter, the I/O node 3 determines whether or not
this processing was a success (S806).

In a case where the processing was a success (S806: Yes),
the I/O node 3 ends the processing. Alternatively, in a case
where the processing failed (S806: No), the I/O node 3 per-
forms the processing of S803.

In a case where the determination of S804 is that the infor-
mation is registered (S804: Yes), the I/O node 3 configures the
utilization statuses 31235 of all the computation nodes 2
corresponding to the address management table 3123 to
unused (S807). Thereafter, the [/O node 3 performs the pro-
cessing of S806.

FIG. 19 is an example of a flowchart showing the flow of
processing an I/O node 3 boot-up process.

When the 1/O node 3 is powered up (S901), the /O node 3
(the configuration information collection program 3111) uses
the RDMA function, sets a data notification bit in the control
command storage area 215 of each computation node 2
memory (S902), and sends an interrupt notification to each
computation node 2 (S903).

The computation node 2 (the configuration information
collection program 2111) receives the interrupt notification
from the I/0 node 3 (S904), checks that a data notification bit
is stored in the control command storage area 215 of the
memory 21 (S905), and sends the cache management table
2122 information held by this computation node 2 to the [/O
node 3 (5906).

The I/O node 3 receives the cache management table 2122
information from the computation node 2, and registers infor-
mation based on this information in the cache management
table 3122 (S907). The I/O node 3 determines whether or not
the processing of S907 was a success (S908).

In a case where the processing was a success (S908: Yes),
the I/O node 3 ends the processing. Alternatively, in a case
where the processing failed (S908: No), the I/O node 3 per-
forms the processing of S902.

According to Example 1, in a computer system 1 in which
an I/O node 3 is coupled to multiple computation nodes 2, it
is possible to share data in a cache area without duplicating
this data.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In addition, Example 1 also makes it possible to share
frequently used data in a cache area between computation
nodes 2 by forming a cache area (a shared cache area), which
stores data referenced by multiple computation nodes 2.
Therefore, Example 1 makes it possible to enhance the pro-
cessing performance of an application program running on
the computation node 2 without increasing the capacity of the
cache area of each computation node 2, and, in addition, also
enables I/O requests from multiple computation nodes to be
concentrated in the local cache area of a computation node to
avoid the deterioration of application program processing
performance.

EXAMPLE 2

Example 2 will be explained hereinbelow. In so doing, the
differences with Example 1 will mainly be explained, and
explanations of points in common with Example 1 will either
be simplified or omitted.

In Example 2, in a case where there is an /O request from
the application program 4, each computation node 2 deter-
mines whether or not the request data is stored in the local
cache area 214 ofthe computation node 2, and in a case where
the data is being stored, returns the stored data to the appli-
cation program 4 without sending the I/O request to the /O
node 3.

FIG. 20 is an example of a flowchart showing the flow of
processing of a cache management program 2113 related to
Example 2.

The cache management program 2113 determines whether
or not there is an I/O request from the application program 4
(S1001).

In a case where there is no 1/O request (S1001: No), the
cache management program 2113 performs the processing of
S1001.

Alternatively, in a case where there is an 1/O request
(S1001: Yes), the cache management program 2113 refer-
ences the cache management table 2122, and determines
whether the requested data is stored in the local cache area
214 (S1002).

In a case where the requested data is not being stored in the
local cache area 214 (S1002: No), the cache management
program 2113 performs the same processing as the process-
ing of S302 through S305 of FIG. 13 (S1003 through S1006).

Alternatively, in a case where the requested data is stored in
the local cache area 214 (S1002: Yes), the cache management
program 2113 acquires the data from the local cache area 214
rather than from the cache area 314 of the /O node 3 (S1007).
The cache management program 2113 creates a response
message for the application program 4 (S1008). Thereafter,
the cache management program 2113 performs the process-
ing of S1006.

EXAMPLE 3

Example 3 will be explained. In so doing, the points of
difference with Example 1 and Example 2 will mainly be
explained, and explanations of the points in common with
Example 1 and Example 2 will either be simplified or omitted.

In Example 3, the computation nodes 2 include a virtual
node (a virtual computer) in addition to a physical node.
There is no I/O node 3 in Example 3, and in place of the [/O
node 3, any virtual node performs the same processing as the
/O node 3.

FIG. 21 shows the overall configuration of a computer
system 1 related to Example 3.

US 9,047,195 B2

19

There is a computation node 2D, which has a storage
device 34. The computation node 2D creates and manages
one or more virtual servers 51 by executing a virtualization
mechanism 5 (for example, a hypervisor). The virtual servers
51 include a virtual server 51A, which is a virtual computa-
tion node 2, and a virtual server 51B, which performs the
same processing as the 1/0 node 3.

The processor 22 executes processing as a computation
node by executing the required processing based on a control
program group 211D and a management table group 212D,
which are stored in a memory area (omitted from the drawing)
allocated to the virtual server 51A from within the memory
21. In addition, the processor 22 executes processing as an [/O
node by executing the required processing based on a control
program group 311 and a management table group 312,
which are stored in a memory area (omitted from the drawing)
allocated to the virtual server 51B from within the memory
21.

This example employs a configuration, which partitions
processing using a virtualization mechanism, but either an OS
thread partition or processing partition function may be
employed without using the virtualization mechanism.

A number of examples have been explained hereinabove,
but the present invention is not limited to these examples.

For example, in the examples described above, in the pro-
cessing of S603 (refer to FIG. 16) of the computation node 2
cache management part 2113, data was written to an area
corresponding to a request source, but a hash value or the like
may be used to uniquely decide a computation node 2 for
storing data so as not to duplicate data between computation
nodes 2.

In the examples described above, the cache data ofthe local
cache area 214, the local extended cache area 3141, and the
shared cache area 3142 are updated at the time of a read
request from the application program 4. However, the shared
cache management program 3112 can comprise a control
API, and in accordance with a specification from the appli-
cation program 4, the control API can fixedly arrange data
used by the application program 4 in any of the cache areas,
i.e. the local cache area 214, the local extended cache area
3141, and the shared cache area 3142. In accordance with
this, the processing of S603, S604, and S605 in the processing
of the shared cache management program 3112 are omitted.

In the examples described above, in the shared cache man-
agement program 3112 of the I/O node 3, data was migrated
from the one computation node 2 (for example, computation
node 2A) to the other computation node (for example, com-
putation node 2B) via the /O node 3 in accordance with a
RDMA communication in a case where a cache hit occurred
in any virtual local cache 3143, but a direct RDMA commu-
nication process may be performed between the computation
nodes 2 (for example, computation nodes 2A and 2B) without
going through the cache area 314 of the /O node 3.

In the examples described above, the application program
4 sends an I/O request, which specifies a page number, but an
1/0 request may be sent using a virtual address specification.

In the examples described above, processing, which speci-
fies the capacity of the local cache area 214, was performed by
the configuration information collection program 2111 of the
computation node 2, but this processing may be performed by
the configuration information collection program 3111 of the
1/O node 3.

In the examples described above, one local extended cache
area 3141 was formed in the memory 21, but multiple local
extended cache areas 3141 may be formed in each computa-
tion node.

10

15

20

25

30

35

40

45

50

55

60

65

20

In the examples described above, the local extended cache
area 3141 and the shared cache area 3142 were logically
partitioned and managed in the memory 31, but the two areas
may be managed as a single area.

In the examples described above, to ensure that data in the
local extended cache area 3141 and the shared cache area
3142 was not duplicated, a check was performed to determine
whether or not the data being stored in this two cache areas
was redundant, but this processing may be omitted.

In the examples described above, the configuration is such
that the interfaces 23 and 33 of the computation node 2 and
the /O node 3 are coupled without going through a prescribed
apparatus, but, for example, the computation node 2 interface
22 and the /O node 3 interface 33 can be coupled via a switch.
In so doing, for example, in a case where there are multiple
computation nodes 2 and I/O nodes 3, when data is to be sent
from a certain computation node 2 to a specific /O node 3, the
computation node 2 may send information identifying the [/O
node 3 to the switch apparatus at the same time as the I/O
request. This makes it possible for the switch to identify a
specific computation node 2, and to distribute an I/O request
from the computation node 2 to the specific /O node 3.

The storage device may comprise logical areas, and each
logical area may an element comprising a stripe based on a
RAID group. Each logical area group may be a component of
a logical unit provided to an apparatus, which is the source of
awrite request (for example, either a host computer or another
storage system), or may be an area group (an area group
allocated to the write-destination virtual segment correspond-
ing to the write to the virtual segment), which is dynamically
allocated to any of multiple virtual segments (virtual storage
areas) comprising a virtual logical unit (for example, alogical
unit conforming to Thin Provisioning) provided to the write
request source apparatus. In the case of the latter, a storage
area pool may be configured using multiple logical segments,
and may be allocated to the virtual segment in logical segment
units. The storage area pool may comprise multiple logical
units, and in accordance with this, each logical unit may
comprise two or more logical segments.

The swap-out process may be performed at a different time
either instead of or in addition to being performed during a
series of processes (S504 of FIG. 15) performed after receiv-
ing the 1/O request.

In this specification, a storage system of the following
(Wording 1) and (Wording 2) has been explained.

(Wording 1)

A computer system comprising:

multiple first computers; and

a second computer comprising a second storage device,

wherein each of the above-mentioned multiple first com-
puters comprises a first application program, a first cache
management module, and a first cache area,

the above-mentioned second computer comprises a virtu-
alization mechanism,

multiple OSs run on the above-mentioned virtualization
mechanism, and the above-mentioned multiple OSs comprise
an OS for running a second application program, and at least
one OS comprising a second cache management module and
a second cache management table,

the above-mentioned first application program and/or the
above-mentioned second application program send(s) an
access request to the above-mentioned second cache manage-
ment module,

the above-mentioned second cache management module:

(A) receives the above-mentioned access request from the
above-mentioned first application program and/or the above-
mentioned second application program;

US 9,047,195 B2

21

(B) references the above-mentioned second cache manage-
ment table to identify a storage location of an access-target
data conforming to the above-mentioned access request;

(C) sends a data transfer request to a first cache manage-
ment module which stores the above-mentioned access-target
data in a case where the above-mentioned access-target data
exists in the above-mentioned first cache area; and

(D) acquires the above-mentioned access-target data from
the above-mentioned second storage device in a case where
the above-mentioned access-target data does not exist in the
above-mentioned first cache area,

in the case of the above-mentioned (C), the above-men-
tioned first cache management module acquires the above-
mentioned access-target data conforming to the above-men-
tioned data transfer request from a relevant first cache area,
and sends the above-mentioned access-target data to the
above-mentioned second cache management module, and

the above-mentioned second cache management module
sends the above-mentioned acquired access-target data or the
received access-target data to the above-mentioned first
application program and/or the above-mentioned second
application program, which are/is the source of the above-
mentioned access request.

(Wording 2)

A computer system, comprising:

multiple first computers, which each comprise a first cache
area; and

a second computer, which comprises a second storage
device,

wherein the above-mentioned second computer comprises
a function for managing the above-mentioned first cache
areas of the multiple first computers,

each of the above-mentioned multiple first computers com-
prises a first application program, a first cache management
module, and a first cache area,

the above-mentioned second computer comprises a second
cache management module, multiple second cache areas, a
third cache area, and a second cache management table,

each of the above-mentioned multiple first cache areas is
associated with one of the above-mentioned second cache
areas,

the above-mentioned first cache area and the above-men-
tioned third cache area are physical cache areas,

the above-mentioned second cache area is a virtual cache
area,

the above-mentioned target first computer is any first com-
puter of the above-mentioned multiple first computers, and

a target first application program of the above-mentioned
target first computer sends an access request to the above-
mentioned second computer via the first cache management
module of the above-mentioned target first computer,

the above-mentioned second cache management module:

(A) receives the above-mentioned access request from the
above-mentioned first application program;

(B) references the above-mentioned second cache manage-
ment table to identify a storage location of access-target data
conforming to the above-mentioned access request; and

(C) in a case where the above-mentioned access-target data
exists in the above-mentioned second cache area, sends a data
transfer request to a relevant first cache management module
of the above-mentioned target first computer, which com-
prises a target first cache area corresponding to the above-
mentioned second cache area,

the above-mentioned relevant first cache management
module acquires the above-mentioned access-target data con-
forming to the above-mentioned data transfer request from
the above-mentioned target first cache area, and sends the

10

15

20

25

30

35

40

45

50

55

60

65

22

above-mentioned access-target data to the above-mentioned
second cache management module, and

the above-mentioned second cache management module
sends the received access-target data to the above-mentioned
first application program.

In these wordings, the first application program and the
second application program, for example, correspond to
application programs 4A through 4D. The OS, for example,
corresponds to either the control program group 211A
through 211D or the control program group 311. The first
cache management module, for example, corresponds to the
control program group 211 and the management table group
212 (excluding cache management table 2122), and the sec-
ond cache management module, for example, corresponds to
the control program group 311 and the management table
group 312 (excluding the cache management table 3122).

REFERENCE SIGNS LIST

1 Computer system
2 Computation node
3 I/O node
The invention claimed is:
1. A computer system, comprising:
multiple first computers; and
a second computer comprising a second storage device,
wherein:
each ofthe multiple first computers comprises a first appli-
cation program, a first cache management module, and a
first cache area,
the second computer comprises a virtualization mecha-
nism,
multiple operating systems run on the virtualization
mechanism, and the multiple operating systems com-
prise an OS for running a second application program,
and at least one operating system comprising a second
cache management module and a second cache manage-
ment table,
at least one of the first application program and the second
application program sends an access request to the sec-
ond cache management module, the second cache man-
agement module being configured to:
receive the access request from the at least one of the first
application program and the second application pro-
gram;
reference the second cache management table to identify
a storage location of access-target data conforming to
the access request;
send a request to a first cache management module
which stores the access-target data in a case where the
access-target data exists in the first cache area; and
acquire the access-target data from the second storage
device in a case where the access-target data does not
exist in the first cache area,
in the case of sending the request, the first cache manage-
ment module is configured to acquire the access-target
data conforming to the request from the first cache area,
and to send the access-target data to the second cache
management module, and
the second cache management module is configured to
send the acquired access-target data or the received
access-target data to the at least one of the first applica-
tion program and the second application program serv-
ing as a source of the access request.
2. A computer system according to claim 1, wherein:
the second computer comprises multiple second cache
areas and a third cache area,

US 9,047,195 B2

23

each of the multiple first cache areas is associated with one
of the second cache areas,

the second cache management table stores information of
the second cache area, the third cache area, and the
second storage device,

the first cache area and the third cache area are physical
cache areas,

the second cache area is a virtual cache area, and

the second cache management module is configured to

24

prising a second cache management module and a
second cache management table,

at least one of the first application program and the second
application program sends an access request to the sec-
ond cache management module,

the cache control method comprises performing, by the
second cache management module:

receiving the access request from the at least one of'the first
application program and the second application pro-

determine that a first computer comprises a first cache 10 gram;
area that is relevant and which corresponds to a second referencing the second cache management table to identify
cache area that is relevant by identifying a second cache a storage location of access-target data conforming to
area which stores access-target data conforming to the the access request;
access request. s sending a request to a first cache management module
3. A computer system according to claim 1, wherein: which stores the access-target data, and acquiring the
the first computer further comprises a first cache manage- access-target data conforming to the request from the
ment table, first cache area in a case where the access-target data
the second cache management table stores information of exists in the first cache area;
the first cache area, 20 acquiring the access-target data from the second storage
the first application program sends an access request to the device in a case where the access-target data does not
first cache management module, exist in the first cache area; and
the first cache management module is configured to refer- sending the acquired access-target data or the received
ence the first cache management table, and in a case access-target data to the at least one of the first applica-
where the access-target data is in the first cache area, 25 tion program and the second application program serv-
acquire the access-target data from the first cache area ing as a source of the access request.
without sending the access request to the second com- 7. A cache control method according to claim 6, wherein
_ puter, and . . the second computer comprises multiple second cache areas
in a case where the access-target data is not in a target first and a third cache area,
cache area, the first cache management module is con- 30 each ofthe multiple first cache areas is associated with one
figured to send the access request to the second com- £ the second cache areas
puter, acquire the access-target data from the second ho d cach. ’ bl infi . £
computer, and send the acquired access-target data to the the second cache management ta e stores information o
first application program. the second cache area, the third cache area, and the
4. A computer system according to claim 1, wherein: 35 second storage device, . .
in a case in which the access-target data is in a target first the first cache area and the third cache area are physical
cache area, the first cache management module is con- cache areas, o
figured to send the access request to the second com- the second cache area is a virtual cache area, and
puter, and the second cache management module is configured to
in referencing the second cache management table to iden- 40 determine that a first computer comprises a first cache
tify the storage location of the access-target data con- area that is relevant and which corresponds to a second
forming to the access request, in a case where the access cache area that is relevant by identifying a second cache
target data is in the target first cache area, the second area which stores access-target data conforming to the
computer is configured to read the access-target data access request.
from the target first cache area. 45 8. A computer readable non-transitory data storage

5. A computer system according to claim 1, wherein:

in a case where the access target data is in a target first
cache area, the first cache management module is con-
figured such that the first cache management module
does not send the access request to the second computer, 50
and

medium containing a computer program having instructions
stored therein, the instructions being executable by a proces-
sor belonging to a second computer, which is coupled to
multiple first computers and which is configured to manage a
second storage device,

wherein:

in a case where the access target data is not in the target first
cache area, the first cache management module is con-
figured to send the access request to the second com-

each ofthe multiple first computers comprises a first appli-
cation program, a first cache management module, and a
first cache area,

puter. 55 the computer program comprises a virtualization mecha-

6. A cache control method performed by a second com- nism,
puter, which is coupled to multiple first computers and man- multiple operating systems run on the virtualization
ages a second storage device, wherein: mechanism, and the multiple operating systems com-
each of the multiple first computers comprises a first appli- prise an operating system for running a second applica-
cation program, a first cache management module, and a 60 tion program, and at least one operating system com-
first cache area, prising a second cache management module and a
the second computer comprises a virtualization mecha- second cache management table, the second cache man-
nism, agement module being configured to receive an access
multiple operating systems run on the virtualization request sent by at least one of the first application pro-
mechanism, and the multiple operating systems com- 65 gram and the second application program, the execut-

prise an operating system for running a second applica-
tion program, and at least one operating system com-

able instructions causing the second cache management
module to perform operations comprising:

US 9,047,195 B2

25

receiving the access request from at least one of the first
application program and the second application pro-
gram;

referencing the second cache management table to identify
a storage location of access-target data conforming to
the access request;

sending a request to a first cache management module
which stores the access-target data, and acquiring the
access-target data conforming to the request from the
first cache area in a case where the access-target data
exists in the first cache area;

acquiring the access-target data from the second storage
device in a case where the access-target data does not
exist in the first cache area; and

sending the acquired access-target data or the received
access-target data to the at least one of the first applica-
tion program and the second application program, serv-
ing as a source of the access request.

#* #* #* #* #*

10

15

26

